

Curriculum Subject: Physics (042) Class XII

Session: 2024-25

EVALUATION SCHEME

	Theory	
Jnits	Title	Marks
1	Electrostatics	
	Chapter - 1 : Electric Charges and Fields	
	Chapter - 2 : Electrostatic Potential and Capacitance	16
Ш	Current Electricity	
	Chapter - 3 : Current Electricity	
Ш	Magnetic Effects of Current and Magnetism	
	Chapter - 4: Moving Charges and Magnetism	
	Chapter - 5 : Magnetism and Matter	17
IV	Electromagnetic Induction and Alternating Currents	
	Chapter - 6 : Electromagnetic Induction	
	Chapter - 7 : Alternating Currents	
V	Electromagnetic Wave	
	Chapter - 8 : Electromagnetic Wave	
VI	Optics	18
	Chapter - 9 : Ray Optics and Optical Instruments	
	Chapter - 10 : Wave Optics	
VII	Dual Nature of Radiation and Matter	
	Chapter - 11 : Dual Nature of Radiation and Matter	
VIII	Atoms and Nuclei	12
	Chapter - 12 : Atoms	
	Chapter - 13 : Nuclei	
IX	Electronic Devices	_
	Chapter - 14 : Semiconductor - Electronics: Materials, Devices and Simple Circuits	7
	Total	70

Unit / Month	Name of the chapter	Practical and Competency Skill Based Activities/ Experiential Learning	Skills	Assessments
Unit I (April)	Chapter 1- Electrostatics Students will be able to: Explain: Electric charges, conservation of charge Define Coulomb's law-force between two point charges and force between multiple charges. Superposition principle and continuous charge distribution. Explain: Electric field, electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole, torque on a dipole in a uniform electric field. Define: electric flux, statement of Gauss' theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside)	To determine the resistivity of two/three wires by plotting a graph between voltage and current. Visit to a Windmill	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity
	Chapter 2- Electrostatic Potential and Capacitance: Students will be able to: Define: Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges Explain: Equipotential surfaces, electrical potential energy of a system of two point charges and electric dipoles in a electrostatic Field Explain: Conductors and insulators, free charges and bound charges inside a conductor. Dielectric and electric polarization Understand: capacitor and capacitance. Combination of capacitor in series and parallel. Capacitance of parallel plate capacitor with and without dielectric medium between the plates. Energy stored in the capacitor (No derivation, formulae only)	Collaboration with the windmill trip	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity
Unit II (May)	Chapter 3- Current electricity Students will be able to: Define: Electric current, flow of electric charges in a metallic conductor, drift velocity and mobility and their relation with electric current Explain: Ohm's law, V-I characteristics (linear and non linear) Electric energy and power. Electric resistivity and conductivity, Temperature dependence of resistance. Describe: Internal resistance of a cell, potential difference and e.m.f of a cell, combination of cells in series and in parallel. Understand: Kirchhoff laws and Wheatstone bridge	 To find the resistance of a given wire / standard resistor using a meter bridge. To verify the laws of combination (Series) of resistance using meter bridge or To verify the laws of combination (Parallel) of resistance using meter bridge 	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab Activity

Unit III (May-June)	Chapter 4-Moving charge and Magnetism Students will be able to: • Explain: Magnetic field. Oersted's experiment. •Understand: Biot-Savart's law and its application to current carry a circular loop. Ampere's law and its applications to infinitely long straight wire, Straight solenoid (only qualitative treatment) • Define: force on a moving charge in uniform magnetic and electric fields. • Describe: force On a current-carrying conductor in a uniform magnetic field. Force between two parallel plates current carrying conductor, definition of ampere. Torque experienced by a current loop in a uniform magnetic field. Current loop as a magnetic dipole and its magnetic dipole moment, moving coil galvanometer its current sensitivity and conversion to ammeter and voltmeter.	 To determine resistance of a galvanometer by half deflection method and to find its figure of merits. To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of desired range and to verify the same.	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity
		desired range and to verify the same. Field Trip to Hydroelectric Power Project		
	Chapter 5-Magnetism and matter Students will be able to: Explain: Bar magnet as an equivalent solenoid (qualitative treatment only), magnetic field intensity due to magnetic dipole (bar magnet) along its axis and perpendicular to its axis (qualitative treatment only) Understand: Torque on a magnetic dipole (bar magnet) in a uniform magnetic field (qualitative treatment only), magnetic field lines. Magnetic properties of material – Para, dia and Ferro magnetic substances with examples, magnetization of material, effect of temperature on magnetic properties.	Determination of magnetic field intensity		
Unit IV (June-July)	Chapter 6-Electromagnetic induction and alternating current Students will be able to: Define: Electromagnetic induction; Faraday's law, induced e.m.f. and current; Lenz's law, self and mutual induction. Chapter 7- Alternating Current Students will be able to: Understand: Alternating current, peak and RMS value of alternating current/ voltage, reactance and impedance. LCR series circuit (pharos only), resonance Explain: power in ac Circuit, power factor, and wattles current. AC generator and transformer.	Measurement of AC and DC with the help of multimeter	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity
Unit V (July)	Chapter 8- Electromagnetic waves Students will be able to: •Understand: Basic idea of displacement current, Electromagnetic waves and their characteristics (qualitative ideas Only).Electromagnetic spectrum (Radio waves, Microwaves, Infrared, visible, ultraviolet-rays, Gamma rays) including elementary facts about their uses.	To find the frequency of AC mains using sonometer.	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity

Unit VI (July- August)	Chapter 9-Ray optics and optical instruments Students will be able to: • Understand: Reflection of light, Spherical mirrors, mirror formula. Refraction of light. • Define: Total internal reflection and optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lens-maker's formula. Magnification ,	 To find the value of v for different values of u in case of concave mirror and to find the focal length To find the focal length of convex mirror, using a 	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity
	 Explain Magnification, power of a lens and combination of thin lenses in contact. Describe: Refraction of light of light through a prism. Optical instrument: microscope and astronomical telescope (reflecting and refracting) and their magnifying powers. 	 convex lens. To find the focal length of a convex lens by plotting graphs between u and v or between 1/u and 1/v. To find the focal length of a concave lens, using a convex lens. To determine angle of minimum deviation for a 	Knowledge, Understanding, Application, Analysis and Evaluation Knowledge, Understanding,	Oral Test/ Class test/ Quizzes / Lab activity
		given prism by plotting a graph between angle of incidence and angle of deviation.	Application, Analysis and Evaluation	Class test/ Quizzes / Lab activity
	Chapter 10-Wave Optics Students will be able to: Explain: Wave optics: Wave front and Huygens' Principle, reflection and refraction of plane waves at a plane surface using wave fronts. Understand: Proof of laws of reflection and refraction using Huygens principle. Interference, young's double slit experiment and expression for fringe width (no derivation final expression only), coherent source and sustained interference of light. Diffraction due to single slit, width of central maximum (qualitative treatment only).	Application of interference with different examples	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity
Unit VII (September)	Chapter 11-Dual matter of radiation Students will be able to: Explain: The Dual nature of radiation. Photoelectric effect, Hertz and Lenard's observation. Understand: State Einstein's photoelectric equation- particle nature of light. experimental study of photoelectric effect Describe: Matter waves-wave nature of particles, de Broglie relation.	Graphs based on intensity and frequency of incident light on stopping potential	Knowledge, Understanding, Application, Analysis and Evaluation	Oral Test/ Class test/ Quizzes / Lab activity

Unit VIII		Application of X- Rays and	Knowledge,	Oral Test/
	Chapter 12-Atoms	Gamma Rays	Understanding,	Class test/
(September	Students will be able to:	,	Application,	Quizzes /
-October)	Understand: Alpha particles scattering		Analysis and	Lab activity
	experiment, Rutherford model of atom , Bohr		Evaluation	
	model of hydrogen atom, expression for radius of			
	nth possible orbit, velocity and energy of electron in			
	nth orbital, hydrogen line spectrum (qualitative			
	treatment only)			
	Chapter 13- Nuclei			
	Students will be able to:			
	●Explain: Composition and size of nucleus,		Knowledge, Understanding,	Oral Test/ Class test/
	Nuclear force, mass energy relation, mass defect,		Application,	Quizzes /
	binding energy per nucleon and its variation with		Analysis and	Lab activity
	mass number, nuclear fission and nuclear fusion.		Evaluation	
Unit IX	Chapter 14-Electronic devices	To draw the I-V		
	Students will be able to:	characteristics curve for		
(November)	●Describe: Energy bands in conductors,	a p-n junction diode in forward bias and reverse bias.		
	semiconductor or an insulator (qualitative idea			
	only), intrinsic and extrinsic semiconductors, p and			
	n type, p-n junction semiconductor diode I-V			
	characteristics in forward and reverse bias,			
	●Explain: application of junction diode and diode as			
	a rectifier.			

PRACTICAL

Sr. No.	Evaluation Scheme	Marks
1	Two experiments one from each section	7 +7
2	Practical record [experiments and activities]	5
3	One activity from any section	3
4	Investigatory Project	3
5	Viva on experiments, and activities	5
	Total	30

Sr. No.	Books	Publisher
1	Physics Part - I	NCERT
2	Physics Part - II	NCERT
3	Lab Manual	Evergreen